CORVALLIS, Ore. – Researchers at Oregon State University have found a way to use magnetic “nanobeads” to help detect chemical and biological agents, with possible applications in everything from bioterrorism to medical diagnostics, environmental monitoring or even water and food safety.
When fully developed as a hand-held, portable sensor, like something you might see in a science fiction movie, it will provide a whole diagnostic laboratory on a single chip.
The research could revolutionize the size, speed and accuracy of chemical detection systems around the world.
New findings on this “microfluidic sensor” were recently reported in Sensors and Actuators, a professional journal, and the university is pursuing a patent on related technologies. The collaborative studies were led by Vincent Remcho, an OSU professor of chemistry, and Pallavi Dhagat, an assistant professor in the OSU School of Electrical Engineering and Computer Science.
The key, scientists say, is tapping into the capability of ferromagnetic iron oxide nanoparticles –extraordinarily tiny pieces of rust. The use of such particles in the new system can not only detect chemicals with sensitivity and selectivity, but they can be incorporated into a system of integrated circuits to instantly display the findings.
Rapid detection of chemical toxins used in bioterrorism would be possible, including such concerns as anthrax, ricin or smallpox, where immediate, accurate and highly sensitive tests would be needed. Partly for that reason, the work has been supported by a four-year grant from the Army Research Laboratory, in collaboration with the Oregon Nanoscience and Microtechnologies Institute.
However, routine and improved monitoring of commercial water treatment and supplies could be pursued, along with other needs in environmental monitoring, cargo inspections, biomedical applications in research or medical care, pharmaceutical drug testing, or even more common uses in food safety.
Other OSU researchers working on this project include Tim Marr, a graduate student in electrical engineering, and Esha Chatterjee, a graduate chemistry student.
The concept has been proven in the latest study, scientists say, and work is continuing with microfluidics research to make the technology robust and durable for extended use in the field.
About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.
Oregon State University Media Contact: David Stauth, 541-737-0787 Source: Vincent Remcho, 541-737-8181 Pallavi Dhagat, 541-737-9927
No comments:
Post a Comment