UC San Diego researchers developing better tissue scaffolds.
University of California, San Diego NanoEngineers won a grant from the National Institutes of Health (NIH) to develop the tools to manufacture biodegradable frames around which heart tissues – functional blood vessels included – will grow. Developing methods for growing tissues that mimic nature's fine-grained details, including vasculature, could lead to breakthroughs in efforts to grow replacement cardiac tissues for people who have suffered a heart attack. The work could also lead to better systems for growing and studying cells, including stem cells, in the laboratory.
Professor Shaochen Chen from the UC San Diego Department of NanoEngineering is the Principal Investigator on the four-year $1.5 million grant from the National Institutes of Health. The grant is funding development of the manufacturing platform necessary to produce these biodegradable frames or "scaffolds."
"We are creating biomaterials with nanostructures on the inside," said Chen. "Scientifically there are so many opportunities at the molecular level, and nanoengineering is a perfect fit for that. We expect our new biofabrication platform will yield tissues that mimic natural tissues much more closely."
As in previous versions of Chen's scaffold-building system, cells will be encapsulated within scaffold walls.
"Usually, when researchers grow tissue, they make a scaffold, put the cells in the scaffold and let the cells grow," explained Chen. "When we fabricate our scaffolds, the cells are already inside the scaffold walls." Encapsulating cells within the walls encourages uniform seeding of cells.
The scaffolds will be based on natural materials such as hyaluronic acid, a key component of the "extracellular matrix" that provides structural support, wound healing, and a range of other functions to human and other animal tissues.
"The hydrogels for our scaffolds can't be too soft, too sticky or too rigid. They need to fit the needs of the biological tissue," said Chen.
Collaborators at Harvard Medical School will grow and characterize the tissues started on the scaffolds.
Projection Bioprinting
To manufacture tissue scaffolds, Chen and colleagues have developed and continue to refine a manufacturing process that uses light, precisely controlled mirrors, and a computer projection system. First, the engineers design a three dimensional model of the structure to be printed. Next, the engineers prepare a solution containing both the cells that will eventually grow into the tissue and the polymers that will solidify into the scaffold. When light shines into the solution using the series of mirrors, the scaffold solidifies according to the exact specifications of the projected image.
Following these steps, scaffolds are manufactured and cells are encapsulated in scaffold walls as light solidifies the polymers one layer at a time.
"With our biofabrication platform, we can build arbitrary, three-dimensional shapes, like branches of blood vessels, and tubes – large and small," said Chen. My focus is on the materials fabrication and devices level. This work is applicable to many different types of cells and tissues." ###
Shaochen Chen joined the faculty of the Department of NanoEngineering at UC San Diego in July, 2010. Chen is also a faculty member of the UC San Diego Institute of Engineering in Medicine.
Contact: Daniel Kane dbkane@ucsd.edu 858-534-3262 University of California - San Diego
No comments:
Post a Comment