$30,000 Lemelson-MIT Collegiate Student Prizes awarded to inventive students nationwide; 4 leading institutes celebrate 2010 winners.
Troy, N.Y. – Determined to play a key role in solving global dependency on fossil fuels, Javad Rafiee, a doctoral student in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer Polytechnic Institute, has developed a new method for storing hydrogen at room temperature.
Rafiee has created a novel form of engineered graphene that exhibits hydrogen storing capacity far exceeding any other known material.
With adviser and Rensselaer Professor Nikhil Koratkar, Rafiee used a combination of mechanical grinding, plasma treatment, and annealing to engineer the atomic structure of graphene to maximize its hydrogen storage capacity. This new graphene has exhibited a hydrogen storage capacity of 14 percent by weight at room temperature – far exceeding any other known material.
This 14-percent capacity surpasses the U.S. Department of Energy 2015 target of realizing a material with hydrogen storage capacity of 9 percent by weight at room temperature. Rafiee said his graphene is also one of the first known materials to surpass the Department of Energy's 2010 target of 6 percent.
Rafiee's graphene exhibits three critical attributes that result in its unique hydrogen storage capacity. The first is high surface area. Graphene's unique structure, only one atom thick, means that each of its carbon atoms is exposed to the environment and, in turn, to the hydrogen gas. The second attribute is low density. Graphene has one of the highest surface area-per-unit masses in nature, far superior to even carbon nanotubes and fullerenes
The third attribute is favorable surface chemistry. After oxidizing graphite powder and mechanically grinding the resulting graphite oxide, Rafiee synthesized the graphene by thermal shock followed by annealing and exposure to argon plasma. These treatments play an important role in increasing the binding energy of hydrogen to the graphene surface at room temperature, as hydrogen tends to cluster and layer around carbon atoms.
Talented Engineer
Rafiee joined Rensselaer in 2008, following an internship at the City University of Hong Kong and earning his bachelor's and master's degrees in mechanical and manufacturing engineering from the University of Tabriz in Iran. At Rensselaer, Rafiee and his brother, Mohammad, joined the research group of Mechanical, Aerospace, and Nuclear Engineering Professor Nikhil Koratkar.
"Javad is extremely knowledgeable, has great confidence in his abilities, and has demonstrated a very high level of creativity and originality. However, it is his deep passion and enthusiasm for research and discovery coupled with his amazing drive and energy that differentiates him from his peers," Koratkar said. "This passion and excitement for discovery and innovation is not something that can be taught or learned. It is an intrinsic quality of an individual – either you have it or you don't – and Javad is the most intellectually curious student I have ever had the privilege to advise here at Rensselaer."
In his time at Rensselaer, Rafiee has authored five, and co-authored three, journal papers in various disciplines, ranging from materials science and mechanical engineering, to computer science and urology.
Rafiee is from Tehran, Iran, and expects to earn his doctorate in 2011. Following graduation, he and his brother plan to start their own business with a focus on clean energy and green manufacturing.
Lemelson-MIT Collegiate Student Prizes
In addition to Rafiee's pioneering work, the other winners of the annual Lemelson-MIT Collegiate Student Prize were announced today at their respective universities:
* Lemelson-MIT Student Prize winner Erez Lieberman-Aiden demonstrated creativity and innovation across several disciplines, most recently with his invention of "Hi-C", a three-dimensional genome sequencing method that will enable an entirely new understanding of cell state, genetic regulation and disease.
* Lemelson-MIT Caltech Student Prize winner Heather Agnew contributed to the development of an innovative technique that creates inexpensive, stable, highly reliable biochemical compounds that have the potential to replace antibodies used in many standard diagnostic tests.
* Lemelson-MIT Illinois Student Prize winner Jonathan Naber and the Illini Prosthetics Team developed an affordable, durable, extremely functional prosthetic arm for people in underdeveloped countries, made from recycled materials. ###
ABOUT THE LEMELSON-MIT PROGRAM
celebrating innovation, inspiring youth
The Lemelson-MIT Program recognizes the outstanding inventors and innovators transforming our world, and inspires young people to pursue creative lives and careers through innovation.
Jerome H. Lemelson, one of U.S. history's most prolific inventors, and his wife, Dorothy, founded the Lemelson-MIT Program at the Massachusetts Institute of Technology in 1994. It is funded by The Lemelson Foundation and administered by the School of Engineering. The Foundation sparks, sustains, and celebrates innovation and the inventive spirit. It supports projects in the U.S. and developing countries that nurture innovators and unleash invention to advance economic, social, and environmentally sustainable development. To date, The Lemelson Foundation has donated or committed more than U.S. $150 million in support of its mission.
ABOUT THE LEMELSON-MIT RENSSELAER STUDENT PRIZE
The Lemelson-MIT Rensselaer Student Prize is awarded to a student who has demonstrated remarkable inventiveness and innovation.
Contact: Michael Mullaney mullam@rpi.edu 518-276-6161 Rensselaer Polytechnic Institute
No comments:
Post a Comment