"The microfabricated nature of the new optical tweezer offers an important advantage over conventional optical tweezers based on microscope objective lenses," says Crozier. "High performance objective lenses usually have very short working distances -- the trap is often ~200 mm or less from the front surface of the lens. This prevents their use in many microfluidic chips since these frequently have glass walls that are thicker than this."
The researchers note that the Fresnel Zone Plate optical tweezers could be fabricated on the inner walls of microfluidic channels or even inside cylindrical or spherical chambers and could perform calibrated force measurements in a footprint of only 100x100μm.
Traditional tweezers, by contrast, would suffer from crippling aberrations in such locations. Moreover, in experimental trials, the optical tweezers exhibited trapping performance comparable to conventional optical tweezers when the diffraction efficiency was taken into account.
The researchers envision using their new tweezer inside microfluidic chips to carry out fluid velocity, refractive index, and local viscosity measurements. Additional applications include biological force measurements and sorting particles based on their size and refractive index. Particle-sorting chips based on large arrays of tweezers could be used to extract the components of interest of a biological sample in a high-throughput manner. ###
The work was supported by the Microsystems Technology Office of the Defense Advanced Research Projects Agency and the Harvard Nanoscale Science and Engineering Center of the National Science Foundation.
Contact: Michael Patrick Rutter mrutter@seas.harvard.edu 617-496-3815 Harvard University
Tags: Nano or Nanotechnology and Nanotech or Harvard University and Microfabricated optical tweezer or Defense Advanced Research Projects Agency
No comments:
Post a Comment