Researchers at the University of Central Florida have developed a novel technique that may give doctors a faster and more sensitive tool to detect pathogens associated with inflammatory bowel disease, including Crohn's disease.
The new nanoparticle-based technique also may be used for detection of other microbes that have challenged scientists for centuries because they hide deep in human tissue and are able to reprogram cells to successfully evade the immune system.
The microbes reappear years later and can cause serious health problems such as seen in tuberculosis cases. Current testing methods to find these hidden microbes exist, but require a long time to complete and often delay effective treatment for weeks or even months.
UCF Associate Professor J. Manuel Perez and Professor Saleh Naser and their research team have developed a method using nanoparticles coated with DNA markers specific to the elusive pathogens. The technique is effective and more accurate than current methods at picking up even small amounts of a pathogen. More important, it takes hours instead of weeks or months to deliver results, potentially giving doctors a quicker tool to help patients.
"Our new technique has surpassed traditional molecular and microbiological methods," said Naser, a professor at the UCF College of Medicine. "Without compromising specificity or sensitivity, the nano-method produced reliable and accurate results within hours compared to months."
The group's translational research works is published in today's edition of the journal PLOS One. dx.plos.org/10.1371/journal.pone
The National Institute of General Medical Sciences (NIGMS), which is a part of the National Institutes of Health, and funded the research, said this kind of basic research can provide the foundation for medical breakthroughs.
"Just last year, Dr. Perez and his team unexpectedly discovered the DNA binding property of their magnetic nanosensors, and now they have shown that it may become the basis for a rapid, sensitive lab test for hard-to-measure bacteria and viruses in patient samples," said Janna Wehrle, Ph.D., of NIGMS. "This is a wonderful example of how quickly an advance can move from the research bench to meet an important clinical need."
###
Charalambos Kaittanis, who received his doctoral degree at UCF and worked as a postdoctoral Research Associate under Perez, has lead the experimental work in this study. Kaittanis is now a research fellow at Memorial Sloan-Kettering Cancer Center.
UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the second largest in the nation with more than 58,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy. For more information visit news.ucf.edu
Contact: Zenaida Gonzalez Kotala zenaida.kotala@ucf.edu 407-823-6120 University of Central Florida
No comments:
Post a Comment