A new way to create and control color has implications for display screens and security tags.
Cambridge, Mass. - February 23, 2012 – Engineers at Harvard have demonstrated a new kind of tunable color filter that uses optical nanoantennas to obtain precise control of color output.
Whereas a conventional color filter can only produce one fixed color, a single active filter under exposure to different types of light can produce a range of colors.
The advance has the potential for application in televisions and biological imaging, and could even be used to create invisible security tags to mark currency. The findings appear in the February issue of Nano Letters.
Kenneth Crozier, Associate Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS), and colleagues have engineered the size and shape of metal nanoparticles so that the color they appear strongly depends on the polarization of the light illuminating them. The nanoparticles can be regarded as antennas—similar to antennas used for wireless communications—but much smaller in scale and operating at visible frequencies.
"With the advances in nanotechnology, we can precisely control the shape of the optical nanoantennas, so we can tune them to react differently with light of different colors and different polarizations," said co-author Tal Ellenbogen, a postdoctoral fellow at SEAS. "By doing so, we designed a new sort of controllable color filter."
Crozier credits the latest advance, in part, to taking a biological approach to the problem of color generation. Ellenbogen, who is, ironically, colorblind, had previously studied computational models of the visual cortex and brought such knowledge to the lab.
"The chromatic plasmonic polarizers combine two structures, each with a different spectral response, and the human eye can see the mixing of these two spectral responses as color," said Crozier.
"We would normally ask what is the response in terms of the spectrum, rather than what is the response in terms of the eye," added Ellenbogen.
###
The researchers have filed a provisional patent for their work.
Kwanyong Seo, a postdoctoral fellow in electrical engineering at SEAS, also contributed to the research. The work was supported by the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; and Zena Technologies. In addition, the research team acknowledges the Center for Nanoscale Systems at Harvard for fabrication work. +sookie tex
Contact: Caroline Perry cperry@seas.harvard.edu 617-496-1351 Harvard University
No comments:
Post a Comment