GAINESVILLE, Fla. — Surface tension isn't a very powerful force, but it matters for small things — water bugs, paint, and, it turns out, nanowires.
Nanowires are so tiny that a human hair would dwarf them — some have diameters 150 billionths of a meter. Because of their small size, surface tension that occurs during the manufacturing process pulls them together, limiting their usefulness. This is a problem because the wires are seen as a potential core element of new and more powerful microelectronics, solar cells, batteries and medical tools.
But in a paper in the journal ACS Applied Materials & Interfaces, a University of Florida engineering researcher says he has found an inexpensive solution.
Kirk Ziegler, an assistant professor of chemical engineering, said nanowires are most often made today with a process that involves the immersion of the wires.
Tests of microscope-slide-sized surfaces, each containing trillions of nanowires, showed that the procedure effectively prevents clumping, Ziegler said.
Nanowires have not found wide commercial applications to date, but Ziegler said that as engineers learn how to make and manipulate them, they could underpin far more efficient solar cells and batteries because they provide more surface area and better electrical properties.
"Being able to pack in a higher density of nanowires gives you a much higher surface area, so you start to generate higher energy density," he said.
Ziegler said that biomedical engineers are also interested in using the wires to help deliver drugs to individual cells, or to hinder or encourage individual cell growth. The University of Florida has applied for a patent on the process, he added. ###
Credits, Writer: Aaron Hoover, ahoover@ufl.edu, 352-392-0186. Source: Kirk Ziegler, kziegler@che.ufl.edu, 352-392-0882
Contact: Kirk Ziegler kziegler@che.ufl.edu 352-392-0882 University of Florida
No comments:
Post a Comment