Atoms spiral toward a charged carbon nanotube under dramatic acceleration before splitting apart.
CAMBRIDGE, Mass., -- Carbon nanotubes, long touted for applications in materials and electronics, may also be the stuff of atomic-scale black holes.
Physicists at Harvard University have found that a high-voltage nanotube can cause cold atoms to spiral inward under dramatic acceleration before disintegrating violently. Their experiments, the first to demonstrate something akin to a black hole at atomic scale, are described in the current issue of the journal Physical Review Letters.
At this point, the speeding atoms separate into an electron and an ion rotating in parallel around the nanowire, completing each orbit in just a few trillionths of a second. The electron eventually gets sucked into the nanotube via quantum tunneling, causing its companion ion to shoot away -- repelled by the strong charge of the 300-volt nanotube -- at a speed of roughly 26 kilometers per second, or 59,000 miles per hour.
The entire experiment was conducted with great precision, allowing the scientists unprecedented access to both cold-atom and nanoscale processes.
"Cold-atom and nanoscale science have each provided exciting new systems for study and applications," says Golovchenko, Rumford Professor of Physics and Gordon McKay Professor of Applied Physics at Harvard. "This is the first experimental realization of a combined cold atom-nanostructure system. Our system demonstrates sensitive probing of atom, electron, and ion dynamics at the nanoscale."
The single-walled carbon nanotube used in these researchers' successful experiment was dubbed "Lucy," and its contributions are acknowledged in the Physical Review Letters paper. The nanotube was grown by chemical vapor deposition across a 10-micron gap in a silicon chip that provides the nanowire with both mechanical support and electrical contact.
"From the atom's point of view, the nanotube is infinitely long and thin, creating a singular effect on the atom," Hau says. ###
This work was supported by the Air Force Office of Scientific Research and the National Science Foundation.
Contact: Steve Bradt steve_bradt@harvard.edu 617-496-8070 Harvard University
No comments:
Post a Comment