A team of researchers from the Max Planck Institute of Biochemistry, in Germany, led by the Spanish physicist Rubén Fernández-Busnadiego, has managed to obtain 3D images of the vesicles and filaments involved in communication between neurons. The method is based on a novel technique in electron microscopy, which cools cells so quickly that their biological structures can be frozen while fully active.
"We used electron cryotomography, a new technique in microscopy based on ultra-fast freezing of cells, in order to study and obtain three-dimensional images of synapsis, the cellular structure in which the communication between neurons takes place in the brains of mammals" Rubén Fernández-Busnadiego, lead author of the study which features on the front cover of this month's Journal of Cell Biology and a physicist at the Max Planck Institute of Biochemistry, in Germany, tells SINC.
Sub-zero images
The technique upon which these discoveries are based, electron cryotomography, makes it possible to obtain three-dimensional images of the inside of cells and to minimise any changes to their structure. This is possible because the cells are not fixed with chemical reagents, but are vitrified – in other words they are frozen so fast that the water inside them does not have time to crystallise, and remains in solid state.
These samples, which are always maintained at liquid nitrogen temperatures (below -140 ºC), can be viewed using specially-equipped microscopes. In addition, this method does not require any kind of additional staining, meaning the density of the biological structures can be observed directly. ###
References:
Rubén Fernández-Busnadiego, Benoît Zuber, Ulrike Elisabeth Maurer, Marek Cyrklaff, Wolfgang Baumeister y Vladan Lučić. "Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography". The Journal of Cell Biology 188 (1):145-156, 11 de enero de 2010.
Contact: SINC info@plataformasinc.es 34-914-251-820 FECYT - Spanish Foundation for Science and Technology
No comments:
Post a Comment