Shrinking cells snares charges in less than one-trillionth of a second
CHESTNUT HILL, MA (12/11/2009) – Boston College researchers have observed the "hot electron" effect in a solar cell for the first time and successfully harvested the elusive charges using ultra-thin solar cells, opening a potential avenue to improved solar power efficiency, the authors report in the current online edition of Applied Physics Letters.
When light is captured in solar cells, it generates free electrons in a range of energy states. But in order to snare these charges, the electrons must reach the bottom of the conduction band. The problem has been that these highly energized "hot" electrons lose much of their energy to heat along the way.
The team's success centered on minimizing the environment within which the electrons are able to escape, said Professor of Physics Krzysztof Kempa, lead author of the paper.
Kempa compared the challenge to trying to heat a swimming pool with a pot of boiling water. Drop the pot into the center of the pool and there would be no change in temperature at the edge because the heat would dissipate en route. But drop the pot into a sink filled with cold water and the heat would likely raise the temperature in the smaller area.
"We have shrunk the size of the solar cell by making it thin," Kempa said. "In doing so, we are bringing these hot electrons closer to the surface, so they can be collected more readily. These electrons have to be captured in less than a picosecond, which is less than one trillionth of a second."
The ultrathin cells demonstrated overall power conversion efficiency of approximately 3 percent using absorbers one fiftieth as thick as conventional cells. The team attributed the gains to the capture of hot electrons and an accompanying reduction in voltage-sapping heat. The researchers acknowledged the film's efficiency is limited by the negligible light collection of ultra-thin junctions. However, combining the film with better light-trapping technology – such as nanowire structures – could significantly increase efficiency in an ultra-thin hot electron solar cell technology. ###
In addition to Naughton and Kempa, the research team included Professor of Physics Zhifeng Ren, Research Associate Professor and Laboratory Director Andrzej A. Herczynski, Research Scientist Yantao Gao, doctoral student Timothy Kirkpatrick, and Jakub Rybczynski of Solasta Corp., of Newton MA, which supported the research. Naughton, Kempa and Ren are principals in the clean energy firm as well.
Contact: Ed Hayward ed.hayward@bc.edu 617-552-4826 Boston College
No comments:
Post a Comment