Carbon nanotubes are being considered for use in everything from sports equipment to medical applications, but a great deal remains unknown about whether these materials cause respiratory or other health problems. Now a collaborative study from North Carolina State University, The Hamner Institutes for Health Sciences, and the National Institute of Environmental Health Sciences shows that inhaling these nanotubes can affect the outer lining of the lung, though the effects of long-term exposure remain unclear.
Using mice in an animal model study, the researchers set out to determine what happens when multi-walled carbon nanotubes are inhaled.
The study showed the immune response and fibrosis disappeared within three months of exposure. However, this study used only a single exposure to the nanotubes. "It remains unclear whether the pleura could recover from chronic, or repeated, exposures," Bonner says. "More work needs to be done in that area and it is completely unknown at this point whether inhaled carbon nanotubes will prove to be carcinogenic in the lungs or in the pleural lining."
The mice received a single inhalation exposure of six hours as part of the study, and the effects on the pleura were only evident at the highest dose used by the researchers – 30 milligrams per cubic meter (mg/m3). The researchers found no health effects in the mice exposed to the lower dose of one mg/m3. ###
The study, "Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice," was co-authored by Bonner, Dr. Jessica Ryman-Rasmussen, Dr. Arnold Brody, and Dr. Jeanette Shipley-Phillips of NC State, Dr. Jeffrey Everitt who is an adjunct faculty at NC State, Dr. Mark Cesta of the National Institute of Environmental Health Sciences (NIEHS), Earl Tewksbury, Dr. Owen Moss, Dr. Brian Wong, Dr. Darol Dodd and Dr. Melvin Andersen of The Hamner Institutes for Health Sciences. The study is published in the Oct. 25 issue of Nature Nanotechnology and was funded by The Hamner Institutes for Health Sciences, NIEHS and NC State's College of Agriculture and Life Sciences.
Note to Editors: The presentation abstract follows.
“Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice”
Authors: Jessica Ryman-Rasmussen, Arnold Brody, Jeanette Shipley-Phillips, James Bonner, Jeffrey Everitt, North Carolina State University; Mark Cesta, National Institute of Environmental Health Sciences; Earl Tewksbury, Owen Moss, Brian Wong, Darol Dodd, Melvin Andersen, The Hamner Institutes for Health Sciences.
Published: Oct. 25, 2009, Nature Nanotechnology.
Abstract: Carbon nanotubes are shaped like fibres and can stimulate inflammation at the surface of the peritoneum when injected into the abdominal cavity of mice, raising concerns that inhaled nanotubes may cause pleural fibrosis and/or mesothelioma. Here, we show that multiwalled carbon nanotubes reach the subpleura in mice after a single inhalation exposure of 30 mg m-3 for 6 h. Nanotubes were embedded in the subpleural wall and within subpleural macrophages. Mononuclear cell aggregates on the pleural surface increased in number and size after 1 day and nanotube-containing macrophages were observed within these foci. Subpleural fibrosis unique to this form of nanotubes increased after 2 and 6 weeks following inhalation. None of these effects was seen in mice that inhaled carbon black nanoparticles or a lower dose of nanotubes (1 mg m-3). This work suggests that minimizing inhalation of nanotubes during handling is prudent until further long-term assessments are conducted.
Contact: Matt Shipman matt_shipman@ncsu.edu 919-515-6386 North Carolina State University
No comments:
Post a Comment