CHAMPAIGN, Ill. — By pushing carbon nanotubes close to their breaking point, researchers at the University of Illinois have demonstrated a remarkable increase in the current-carrying capacity of the nanotubes, well beyond what was previously thought possible.
The researchers drove semiconducting carbon nanotubes into an avalanche process that carries more electrons down more paths, similar to the way a multilane highway carries more traffic than a one-lane road.
“Single-wall carbon nanotubes are already known to carry current densities up to 100 times higher than the best metals like copper,” said Eric Pop, a professor of electrical and computer engineering at the U. of I. “We now show that semiconducting nanotubes can carry nearly twice as much current as previously thought.
“We found that the current first plateaus near 25 microamps, and then sharply increases at higher electric fields,” said Pop, who also is affiliated with the Beckman Institute and the Micro and Nanotechnology Laboratory at the U. of I. ”We performed repeated measurements, obtaining currents of up to 40 microamps, nearly twice those of previous reports.”
By inducing very high electric fields in the nanotubes, the researchers drove some of the charge carriers into nearby subbands, as part of the avalanche process. Instead of being in just one “lane,” the electrons and holes could occupy several available lanes, resulting in much greater current.
The avalanche process (which cannot be observed in metallic carbon nanotubes because an energy gap is required for electron-hole multiplication) offers additional functionality to semiconducting nanotubes, Pop said. “Our results suggest that avalanche-driven devices with highly nonlinear turn-on characteristics can be fashioned from semiconducting single wall nanotubes.”
Funding was provided by the National Science Foundation and the National Institute of Standards and Technology through the Nanoelectronics Research Initiative.
Editor’s note: To reach Eric Pop, call 217-244-2070; e-mail
Contact: James E. Kloeppel, Physical Sciences Editor kloeppel@illinois.edu 217-244-1073 University of Illinois at Urbana-Champaign
No comments:
Post a Comment