PNAS study answers longstanding mystery about carbon nanomaterials
HOUSTON -- Rice University materials scientists have put a new "twist" on carbon nanotube growth. The researchers found the highly touted nanomaterials grow like tiny molecular tapestries, woven from twisting, single-atom threads.
Carbon nanotubes are hollow tubes of pure carbon that measure about one nanometer, or one-billionth of a meter, in diameter. In molecular diagrams, they look like rolled-up sheets of chicken wire. And just like a roll of wire or gift-wrapping paper, nanotubes can be rolled at an odd angle with excess hanging off the end.
Though nanotubes are much-studied, their growth is poorly understood. They grow by "self assembly," forming spontaneously from gaseous carbon feedstock under precise catalytic circumstances. The new research, which appears online this week in the Proceedings of the National Academy of Sciences, finds a direct relationship between a nanotube's "chiral" angle -- the amount it's twisted -- and how fast it grows.
The study was co-authored by former Rice research scientist Feng Ding, now assistant professor at Hong Kong Polytechnic University, and Avetik Harutyunyan of the Honda Research Institute USA in Columbus, Ohio. The research was supported by the National Science Foundation, the Welch Foundation and the Department of Defense.
Contact: Jade Boyd jadeboyd@rice.edu 713-348-6778 Rice University
1 comment:
The technology is widely used in industry, both in consumer gadgets as well as larger electrical machinery, so this could be a very interesting, near-term application for nanotubes.The combination of mechanical and electrical properties of nanotubes makes this possible.
x-ray fluorescence
Post a Comment