Because we are at the very limits of what physics allows us to see, —"even breathing close to a regular microscope could affect the quality of the results," says Botton—the new microscope is housed in a stable, specially designed facility able to withstand ultralow vibrations, low noise, and minute temperature fluctuations. Operation of the instrument will also be done from a separate room to ensure results of the highest quality.
Built in the Netherlands by the FEI Company at a cost of $15-million, the Titan cluster will examine at the nano level hundreds of everyday products in order to understand, manipulate and improve their efficiency, says John Preston, director of McMaster's Brockhouse Institute for Materials Research.
The microscope will be used to help produce more efficient lighting and better solar cells, study proteins and drug-delivery materials to target cancers. It will assess atmospheric particulates, and help create lighter and stronger automotive materials, more effective cosmetics, and higher density memory storage for faster electronic and telecommunication devices.
"The addition of the Titan 80-300 Cubed to the Centre's suite of microscopy instruments that include a Titan cryo-in situ solidifies Ontario's and Canada's lead in nanotechnology, and places us among the world's most advanced materials research institutions," says Mo Elbestawi, McMaster's vice-president, Research and International Affairs. ###
Funding for the microscope instrumentation was provided by the Canada Foundation for Innovation, the Ontario Innovation Trust, the Ministry of Research and Innovation of Ontario and the Ontario Ministry of Economic Development and Trade, through a partnership with FEI and McMaster University.
Contact: Jane Christmas chrisja@mcmaster.ca 905-525-9140 x27988 McMaster University
Tags: Nano or Nanotechnology and Nanotech
No comments:
Post a Comment