Currently, gas chromatography systems consist of a gas tank, sample injector, separation column, and gas detector. Samples to be analyzed are vaporized and injected into the column, where compounds are separated and then passed over the detector. Conventional systems tend to be large, fragile, and relatively expensive table-top instruments.
Agah, who established the Microelectromechanical Systems (MEMS) Laboratory (www.ece.vt.edu/mems/) at Virginia Tech shortly after joining the university in 2005, is attempting to develop a gas chromatographic architecture that will fit on a platform the size of a credit card and will separate and analyze a complex range of compounds in only a few seconds.
To create this new architecture, which he has named “GC Matrix,” Agah is employing MEMS technology. In his laboratory, he is developing gas chromatographic columns with heaters, temperature sensors, pressure sensors, and thermal conductivity detectors that can fit on micro-chips. Agah already has developed columns that can separate a limited number of volatile compounds and chemical warfare agent simulants in less than 10 seconds.
In addition to significantly improving the speed, portability, and performance, Agah’s GC Matrix will consume far less power than conventional instruments.
Once perfected, the GC Matrix could be used in a number of industrial and scientific applications. The apparatus also could be effective in saving lives during crises. Emergency workers, for instance, could easily carry GC Matrix instruments into areas devastated by floods to test water for toxic chemicals, and soldiers on the battlefield could test the air within seconds for signs of chemical warfare agents.
Every CAREER award project includes an educational component. Agah will develop a new university laboratory course on MEMS technology. He also is working with Virginia Tech’s National Society of Black Engineers and the Institute of Electrical and Electronics Engineers’ Teacher in Service Program to establish the High-School Microsystems Engineering Program. ###
Before joining the Virginia Tech faculty in 2005, Agah conducted research at the NSF Center for Wireless Integrated MicroSystems at the University of Michigan-Ann Arbor, where he developed MEMS-based gas chromatography columns for environmental monitoring applications. He completed his Ph.D. in electrical engineering at Michigan and received his B.S. and M.S. degrees from Sharif University of Technology in Iran.
Contact: Liz Crumbley lcrumb@vte.du 540-231-9772 Virginia Tech
Tags: Nano or Nanotechnology and Nanotech or Virginia Tech and gas chromatography systems or Microelectromechanical Systems
No comments:
Post a Comment