UC-Riverside research shows graphene, a thin sheet of carbon atoms, has good potential to supplement or replace silicon as an electronic material
RIVERSIDE, Calif. – A game of billiards may never get smaller than this.
Study results appear in today’s issue of Science.
The research team, led by Chun Ning (Jeanie) Lau, found that the electrons in graphene are reflected back by the only obstacle they meet: graphene’s boundaries.
“These electrons meet no other obstacles and behave like quantum billiard balls,” said Lau, an assistant professor who joined UCR’s Department of Physics and Astronomy in 2004. “They display properties that resemble both particles and waves.”
Lau observed that when the electrons are reflected from one of the boundaries of graphene, the original and reflected components of the electron can interfere with each other, the way outgoing ripples in a pond might interfere with ripples reflected back from the banks.
In their experiments, Lau and her colleagues first peeled off a single sheet of graphene from graphite, a layered structure consisting of rings of six carbon atoms arranged in stacked horizontal sheets. Next, the researchers attached nanoscale electrodes to the graphene sheet, which they then refrigerated in a cooling device. Finally, they measured the electrical conductivity of the graphene sheet.
Scientifically, it has become a new model system for condensed-matter physics, the branch of physics that deals with the physical properties of solid materials. Graphene enables table-top experimental tests of a number of phenomena in physics involving quantum mechanics and relativity.
Bearing excellent material properties, such as high current-carrying capacity and thermal conductivity, graphene ideally is suited for creating components for semiconductor circuits and computers. Its planar geometry allows the fabrication of electronic devices and the tailoring of a variety of electrical properties. Because it is only one-atom thick, it can potentially be used to make ultra-small devices and further miniaturize electronics. ###
Lau, whose research focuses on nanowires, carbon nanotubes, graphene and other organic molecules, was joined in the research by UCR’s Feng Miao, Sithara Wijeratne, Wenzhong Bao, Yong Zhang and Ulas C. Coskun. The research was performed at UCR. Currently, Zhang is at Southwest University, China; Coskun is at Duke University, N.C.
UCR startup funds and the UCR Center for Nanoscale Science and Engineering supported the research.
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010.
The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit http://www.ucr.edu/ or call (951) UCR-NEWS.
Contact: Iqbal Pittalwala iqbal@ucr.edu 951-827-6050 University of California - Riverside
Technorati Tags: Nano or Nanotechnology and Nanotech and graphene or University of California - Riverside and quantum mechanics or Do Androids Dream of Electric Sheep? and Halloween Graveyard (Safety Tips) and Look at nanotubes inside living animals VIDEO
No comments:
Post a Comment