This type of e-jet printing could be used for large-area circuits, displays, photovoltaic modules and related devices, as well as other wide-ranging application possibilities in security, biotechnology and photonics, Rogers said.
The success of this effort relied critically on an interdisciplinary team of materials scientists, chemists, mechanical engineers, electrical engineers and physicists within the university’s Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems, |
“As an industrial process, this work opens up the possibility for low-cost and
high-performance printed electronics and other systems that involve materials that cannot be manipulated with more common patterning methods derived from microelectronics fabrication,” said Placid Ferreira, the Grayce Wicall Gauthier Professor of Mechanical Science and Engineering, the director of the center and a key member of the team. Beckman Institute and at the university’s Frederick Seitz Materials Research Laboratory. “These capabilities are taking our research in new and exciting directions.”
Unlike conventional ink-jet printers, which use heat or mechanical vibrations to launch liquid droplets through a nozzle, e-jet printing uses electric fields to pull the fluid out. Although the concept of electric-field induced flow is not new, the way the research team has exploited this phenomenon with nanoscale nozzles and precision control of electric fields to achieve unprecedented levels of resolution is an important advance.
As a demonstration of electronic device fabrication by e-jet printing, thin-film transistors that use aligned arrays of single-walled carbon nanotubes as the semiconductor and e-jet-printed source and drain electrodes were printed on flexible plastic substrates. The transistors were fully operational, with properties comparable to similar devices fabricated with conventional photolithographic methods.
The existing e-jet printer can print text, drawings and images in a fully automated fashion. Current research seeks to improve the printing speed by incorporating large-scale nozzle arrays, and to explore the fundamental limits in resolution.
“The work represents an important milestone in the development of liquid-jet printing technology,” Rogers said, “which creates many exciting possibilities.”
Funding was provided by the National Science Foundation. Part of the work was carried out in the university’s Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.
Contact: James E. Kloeppel kloeppel@uiuc.edu 217-244-1073 University of Illinois at Urbana-Champaign
Editor’s note: To reach John Rogers, call 217-244-4979; e-mail: jrogers@uiuc.edu.
Technorati Tags: Nano or Nanotechnology and Nanotech and e-jet printing or nanoscale nozzles and ink-jet or Racism's cognitive toll and United Nations Headquarters Building and Technology from outer space to playgrounds
No comments:
Post a Comment