ARGONNE, Ill. (May 10, 2007) — More sensitive sensors and detectors based on semiconductor electronics could result from new findings by researchers from the United States, Norway and Russia.
Their research has yielded a decisive step in identifying the origin of the universal "one-over-f" (1/f) noise phenomenon; “f” stands for "frequency."
"One-over-f noise appears almost everywhere, from electronic devices and fatigue in materials to traffic on roads, the distribution of stars in galaxies, and DNA sequences," said Valerii Vinokour or Argonne's Materials Science Division. Download High Resolution Image |
Noise is a fluctuation in time, a deviation from the average. Humans and other animals carry a common example in their heartbeats, where 1/f noise can be detected as a deviation from normal pulse. In nanomaterials, such as the tiny circuits in semiconductor electronics, the noise generated by the random motion of a single electron can be devastating, since there are so few electrons in the system.
Vinokour and his team showed that the 1/f noise in doped semiconductors, the platform for all modern electronics, originates in the random distribution of impurities and the mutual interaction of the many electrons surrounding them. These two ingredients — randomness and interaction — trap electrons in the Coulomb glass, a state like window glass where electrons move by hopping from one random location to another. 1/f noise arises from the electrons' hopping motion. After discovering the theoretical connection between 1/f noise and formation of the Coulomb glass, Vinokour and his collaborators confirmed it with large-scale computer simulations; suppression of the interactions was found to remove the Coulomb glass behavior and 1/f noise.
“Our results," Vinokour said, "establish that one-over-f noise is a generic property of Coulomb glasses and, moreover, of a wide class of random interacting systems and phenomena ranging from mechanical properties of real materials and electric properties of electronic devices to fluctuations in the traffic of computer networks and the Internet.”
These research findings were published in the May 11 issue of Physical Review Letters.
Collaborators on this research were Vinokour and Andreas Glatz, at Argonne, Y.M. Galperin from University of Oslo, Oslo, Norway, and A.F. Ioffe of the Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia.
The nation's first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
Contact: Sylvia Carson scarson@anl.gov 630-252-5510 DOE/Argonne National Laboratory
Technorati Tags: nanofibers or Nanoscientists and Nano or Nanotechnology and nanoparticles or Nanotech and nanotubes or nanochemistry and nanoscale or semiconductor electronics or DNA sequences and Coulomb glass or Argonne National Laboratory and Nanotechnology Today or Public Domain Clip Art and Republican National Convention Blog
No comments:
Post a Comment